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ON TWO MIXED PROBLEMS OF ANTIPLANE STRAIN OF AN ELASTIC WEDGE
WITH CIRCULAR HOLES®

V.S. PROTSENKO

Two problems are examined: 1) a wedge with a circular hole, clamped along
the lower face, is subjected to the action of shear forces along the
upper face, and 2) a rigid stamp acts on the upper face instead of shear
forces. The circular hole is assumed to be load-free. Both problems
reduce to a set of infinite systems of linear equations with a completely
continuous operator ;3 under the condition that the circle does not
tauch the sides of the angle. These equations enable the method of
reduction to be used. Formulas obtained, that relate the basis solutions
of the Laplace equation in two different polar coordinate systems, are
utilized in the solution. The method can be extended to the case of a
wedge with several circular holes.

The problem of the deformation of a wedge with a circular hole was
first examined in one special in /1/, however, the infinite system
obtained there remained uninvestigated.

1. we present the relationships between the basis solutions of Laplace's equation in a

plane (Figs.l and 2; QO, = h, 0,0, = R), which enable us to change from one system of polar
coordinates to another

R i \8 — p1L\® e—inqh
prem=(20) Tt Y (&) sy @<k (1.1)
n=f
" tin 4 Fr'p™ +ist,;
('%1‘) e+ %”=2(n_1)1s Rt ¢ ds (1.2)
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prre" = 3 (— 1) Crnsn-sp "R X (1.3)
M==l)
X MmN o LRy kj=14,2, k]

We will apply (1.2) with o; and v, to satisfy the boundary condition on the face @ =
®>a and with ©; and Vy, on the face ¢ =0 << a.

Formula (l.l1) is obtained as follows. The boundary value problem of finding a harmonic
function within a circle of radius p; <<% with centre at the point 0, (Fig.l) is solved.
values of another harmonic function p-%*® are taken as boundary values. Hence we obtain
the equality of the two harmonic functions
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p et = 3\ 0,7 [d, cos ngy -+ By sinngy] (py < A) (1.4
n==0
that holds not only on the boundary but also within a circle. Setting ¢, = 0 (9 == @) there-
in, we obtain

o0

€% (py 4 Ryt == 2 dnpy

n=)

We will find 4, from this equality. Differentiating (1.4) with respect to ¢, and again
setting ¢, = 0(p = a) we find §,. After elementary reduction we obtain (1.l). The uniqueness
of the expansion obtained by this method follows from the uniqueness of the solution of the
boundary value problem.

Formula (1.2) can be obtained if the Dirichlet boundary value problem is solved for an
angle with apex at the point O containing the ray ¢, = m.

The equality (1.3) is obtained im an elementary manner from the equations

W= 3 e (k=12 k%))
Zx = 2x + iy, R = 0,0,

2, For simplicity, we will consider just one circular hole in an elastic wedge.

Problem 1. Find a harmonic function wu(x,y) in a domain Q that is an angle, with a
circle omitted, by means of the boundary conditions

U lgmo = 0, Bulon lgp = 0 (2.1)
Guldn lg—y = p v (p), gradu | =0 (2.2)

(p is the shear modulus). We will assume that |gradu | & L, (Q,) where €, is the neighbour-
hood of the wedge apex and 7 (p) = L (0, o).
We will seek the solution in the form of the expansion /1-4/

Y= _; (—;:—)n (a, cos ng, + b, sinng,) + (2.3)

1

COs ws

o \ {A(s)coss(w— ) + B(s)sin sp] p ds
¥

(: 0<Res<< b, << 1)

0 DI R 0

Ly
Fig.l Fig.2
The boundary conditions realized by using expansions (1.1) and (1.2) result in an integro-
algebraic system of equations (ap =0, e =R/, B =0 — a)
A(s)

ay P cos fs sin o8

bn”= 2nin! 1S_M"(S)H——sinﬁs ——cosas“ B (s) ds @4
A 107 N7 €'Y, (8) |cos(n—a)s sin(n—a)s|fa, 95
NB(s) ‘llvo“’LLTn‘—_n!‘ cos (x — B)s sin(n——ﬂ)SH b &2

n==1



631

T —s)a™" _ al (s) h~°
()= r(i_(g-—sn)cosu)l v Tale)= T(1+s—n)sinns

Yo (8) = (us)™ S p*r(p)dp

It follows from the geometry of the problem that 0 <Ce <<1.
We shall temporarily assume that 7v(p)p*= L (0, ) for 0 <A< §,. It is later possible
to get rid of this constraint and to set )\ = 0.

Let us study system (2.4). To do this we introduce the operators
D.p n oo cos Bs
— &
u:‘,,au’“m}M"(‘)

sines
We will examine the operators D, I',° (e = a,B) in the space L, (— oo, o0).

f(s)ds

Theorem 1. The operators D, and I, act completely continuously from L, (— oo, oo)
to l, under the condition
arcsin & < min (a, §) (2.6)

We carry out the proof only for D, since it will be analogous for the other operators.
We will first show that the series

e

<17 M5 (s)}{s)cos ﬁ:

d*r, s=A+ it 2.7

converges for any function f(s) = L;(— o, o). We have

1,::5 ]/(s)eosﬂ:l’dtZl—T—M w|'=
an

o[ s (G 1w p e g, — 1)

1(s) eos Ps x

608 ws

The Parseval equality is used here to expand (1.1) in which we have put p, = R. The
integral of the second component in parentheses in the last formula converges since o > f.
We convert the integral of the first component to the form

=
Z‘n S P~ (9y) doy S !f(:) confe 18 o) gy —
s

R

SP""(%N% S 11 (8) PO (g-riosrria-9) dy

0 —o0

The inner integral obviously converges provided that
arcsine < a (2.8)

This means that the series (2.7) also converges undex this condition. If the circle
pp = R intersects the ray ¢, =0, condition (2.8) is violated and the inner integral con-
verges not for all j{§) & Ly {— o, o). This means that this condition is not only sufficient
for series (2.7) to converge but also necessary.

By using truncated sequences (/5/, Sect.20, par.20.4) the complete continuity of the
operator D,f from L, (— oo, ®) into ! under condition (2.8) is established from the con-
vergence of series (2.7). The theorem is proved for D,?. The complete continuity of the
remaining operators D,% T,° (e = a,p) from Ly (— o, %) to l, 1is established by the same
method. Condition (2.6) is the general necessary and sufficient condition for complete con-
tinuity for the whole set of operators D,* and TI,°.

Thus, we have established that a matrix operator is on the right-hand side of (2.4),
whose elements are completely continuous operators from L, (— oo, o) to I, under the condition
(2.6).

To analyse (2.5) it is convenient to introduce the operators

“Amﬂx 1 e, () [cos(n—a)s
B = l—('lTi)T sin(n ~ &) s
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and to consider them defined in [,

Theorem 2. The operators 4g, B, (¢ = a, f} act completely continuously from I, to L, (— oo,
oo) under the condition (2.6).

We will prove the theorem for the operator Bj. We will first establish the convergence
of the integral

RS ey, (s}, 2
I,= S dTL Ap ————-—(n:m sins (m — ) (2.9
00 Ne=]
for the arbitrary sequence A,& [, We have
& z"ln 2 v .
L= || § 1 )sins (= pypav— (2.10)
n=}p —a0

8a? 3 pH-1dp 2 [P l? (—‘Jﬁ—{,,)z" sin? ng; (p)
]

=]

The Parseval equality in known form (/6/,p.126, par.3.17), applied to the expansion (1.2)
in which we set ¢ = © 1s used in the transformation of the integral (2.10).

Series (2.10) converges under the condition minp, > R, which is equivalent to the con-
dition

arc sine < f (2.11)

Convergence of the inner series in (2.10) implies the convergence of series (2.9). 1f
condition (2.1l) violated (this occurs when the circle p, = R intersects a side of the angle
¢ = ©) then the inner series in (2.10) will not converge for all A, & [,, This means that
condition (2.11) is a necessary and sufficient condition for series (2.10) to converge.

We establish from the fact that integral (2,.9) converges, by using truncated functions
(equal to zero for |[T{>1) in L, (— oo, o), that the operator By acts completely con~
tinuously from I, into L, (— oo, c0) under condition (2.11), where this condition is necessary
and sufficient. The validity of Theorem 2 for Ad,, B, is established by an analogous method.
Condition (2.6) is the general necessary and sufficient condition for complete continuity of
these operators., The theorem is proved.

Theorem 2 has established that the matrix operator defined by the right-hand side of
(2.5) has completely continuous operators from [, into L, (— o, o) as its elements.

We will also bear in mind that 7vy,(s) & L, (— o0, o) in (2.6) is the condition for the
circle not to intersect with the sides of the angle.

3. as a result of eliminating the functions A4 (s} and B(s) from system (2.4) and
(2.5), we arrive at the infinite system of equations

o

(1) (1)

¥
2y, %n Ckn infla
“bn ﬁn“T; - l(t‘il'_ .‘33 bk“
T
i chr(n—o) |1 1 dt
S‘,“z‘ S gnk(T)[W“1 i _qshrr—o) 5
B =i | gm (1) LEE= g (3.2)

—00

e™F (— )" T (n 4 i1) %n e
e () =g TA—k r )" |B,| = WAl S (o) Kot (p) dp

K=

Kn*ﬂ___(—n"‘i’ T (n +iv) (L)it“iShta“L 3.3)
K, 2n r{l+4in) h chte || chtw

It turns out to be possible to set A =0 in the system obtained so that the condition
on 1 (p) appears naturally: 7 (p)e L (0, o).

In analysing system (3.1) we start from the fact that its matrix operator is obtained
as a result of composition of completely continuous matrix operators. Since the composition
of two completely continuous operators is a completely continuous operator, the matrix operator
of (3.1) will be completely continuous from [, into l,. We have thereby established the
following theorem.

Theorem 3. The operator of system (3.1) is completely continuous in [, under condition
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(2.6). This condition is also necessary.

Analogous reasoning enables us to deduce that (a,, B,) &€ l;. Therefore, a solution of system
(3.1) belonging to !, exists, is unique, and can be found by the method of reduction under
the condition

arcsin & < min (a, f) (3.4)

This last assertion follows from the Hilbert alternative /7/ and the uniqueness of the
solution of the initial problem of elasticity theory /8/ under the condition that the lines
bounding the body do not touch.

Remark. When the wedge is perforated by k circular holes, the solution of the problem
should be taken in the form

x
R \n
B = E E( p' ) (@ cos np, + bY) sin np ) + uo
—0 r

r=1 n

where u, is the integral component in (2.3). We again obtain a set of k infinite systems
which will possess the same property as system (3.1) under the condition that the holes do not
touch each other and the sides of the angle, by the method elucidated above and relying on
expansion (1.3).

4. We assume in the problem of a stamp that there is no load outside the stamp, while
it itself adheres to the elastic body and is shifted along the o0z axis by a force T. In this
case

b
Yo == (pit)? S p¥t, (p) dp

and the distribution of the tangential forces T, (p) must be found from the condition u o=, = d
for a<p<Cb. The constant d is found from the equilibrium equation

b

§u@dp=T

a

From the conditions under the stamp we have the equation

b oo
@ K (1) mmd ot 3o aullt )+ tall o) @1
(a<p<t)
Hyt 1 ¢ I nlishral gy
Ht=|p |=%=w § rimm (5) | ehea |5 (4.2)

—oo

K(z)= -:‘— S T 1thtocostzdr
[}

wWe make the following substitutions in (4.1)

E=a*lnz+ b* t=a*Ilnp 4 b*
In (ab)

2
S =fwEr = Tnam

Fu@=0@, 9@=Y MI:E -
k=0
where T} (z) are Chebyshev polynomials, and we extract the logarithmic term from the series
K (3):
1
K(@)=—-—In|z}+ F(2)

F(z) =S T3 [e* + (th t@ — 1) cos 1z]dv
0

Applying the procedure of the method of orthogonal polynomials /9/ to the equation
obtained, we arrive at the infinite system

b= MeKopx—p D ¥4y, (6=—nIn2|a*|) (4.3)
k=m0 k=0
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}"n: '_2:;' (uiek“ikn - iAkKnk>

k=1 k=0
K= 15")12“"F(%?~), 1Pf= 5 1) = “’ dz (4.4)
Ay, = axM¥n + byMin, M= I(;)Hkﬂ: (©) p=-exp? b‘
We append the system
o (1) (1) o

obtained from (3.1) as a result of substituting the expansion for T, (p) therein, to the above

The matrix elements have the form (3.2) and

system.
L;n n 1 0 *
+ € (k) t—b
L= Lin = 10 —1 “1: K,* (exp aF >

The set of sysstems (4.3) and (4.5), together with the statics condition, forms a closed
ap, by, A, and d.

system of equations to determine the unknowns
We note first that the series Y n?|K, .|
k.n

5. Let us investigate system (4.3) and (4.5).
has derivatives of any order.

This follows from the fact that the function F(z)

3 e®n1| ME P We introduce the function
kyn

converges.
Let us prove the convergence of the series 2 | L
k,n

(1],5>)~27] «a—-H*‘ . N =¢eid

We will show that this is an analytic function of the variable
(y = hlp)

.1y
n in

(8 is a real number). i
a certain circle. Taking account of (4.4) and {(4.2), we have
had k T e : 4
. ] r(14it)y sh ta
(P(TlvP):—‘l.‘)Z k=1 S T(1—k—1:1) shio dt =
k=1
yit shta dt S e—‘tk"“_l dt =
o

V(= ¢
i 2 k=1t S T(—it)chto
k=1

y it T'(1+it)shta
S <1—|—n) I (—it)ehto gt

N

T Ty
Formulas 8.334 (3), 8.310 (1) and 3.381 (4) from /10/ are used successively here.
In last integral converges and has a derivative with respect to 1n provided that  arcsin
where this condition is necessary and sufficient for the integral to
inli<sinf for

converge., Therefore, the function ¢, p) will be analytic in the circle
B /2 Im]<1 for p>n/2. The inequalities

and in the circle
C = coanst (5.2)

Inj=arcsine<<p=0—a

d
‘ Hk(p)’g(smp)k , k=4,2,...;
Inl=-¢e<sinp

follow from the Cauchy inequalities for the coefficients of the series (5.1) for
The same estimate

and B n/2. For PB>n/2 the sinf in (5.2) should be replaced by unity.

holds for the function Hy™ (p).
Let us investigate the convergence of the series
Eod k o0 o0
G= 3 % ML= 3 o 3 InIMH = 5.3
n, k=1 k=1 n=1

o
t—b*

_52‘— S |fl—l' ZB“

k=1

p=oxp

d 2
a3 Hi @) »

dHy* (p)/dt in a series of

The Parseval equality was used here to expand the function
Taking account of the estimate (5.2) we will have the following

Chebyshev polynomials T ().
inequality for series (5.3):
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1
G dt g \2K
=0 ) i ‘;Z (—m_n_ﬂ-) s c1=const (5.4)

Since inequality (5.2) holds under the condition sinf>e when B < n/2, series (5.4) also
converges under this condition. For PB>n/2 the sinf in (5.4) should be replaced by unitv.
The series G will also converge in this case since e < 1. Therefore, the condition arcsine<Cf
will be rot only the sufficient but also the necessary conditon for series (5.3) to converge.
Convergence of the series }ﬂ | Lyint [* is proved analogously. The convergence of the double

k,n

series of the squares of the moduli of the matrix coefficients o, p{b? was proved earlier

under condition (3.4). Complete continuity of the matrix operators of systems (4.3) and (4.5)
(/5/,p.216) in I, follows from the convergence of the series noted.
We have thereby established the following theorem.

Theorem 4. Condition (3.4) is necessary and sufficient for the complete continuity of
matrix operators of the right-hand sides of systems (4.3) and (4.5) in the space I.

An approximate solution of the infinite systems of problems 1 and 2 can be obtained by
the method of reduction or in the form of expansions in the small parameter e.

The case of several circular holes can be examined in an analogous manner.
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