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ON TWO MIXED PROBLEMS OF ANTIPLANE STRAIN OF AN ELASTIC WEDGE 
WITH CIRCULAR HOLES* 

V.S. PROTSENKO 

Two problems are examined: 1) a wedge with a circular hole, clamped along 
the lower face, is subjected to the action of shear forces along the 
upper face, and 2) a rigid stamp acts on the upper face instead of shear 
forces. The circular hole is assumed to be load-free. Both problems 
reduce to a set of infinite systems of linear equations with a completely 
continuous operator 1, under the condition that the circle does not 
tauch the sides of the angle. These equations enable the method of 
reduction to be used. Formulas obtained, that relate the basis solutions 
of the Laplace equation in two different polar coordinate systems, are 
utilized in the solution. The method can be extended to the case of a 
wedge with several circular holes. 

The problem of the deformation of a wedge with a circular hole was 
first examined in one special in /l/, however, the infinite system 
obtained there remained uninvestigated. 

1. We present the relationships between the basis solutions of Laplace's equation in a 
plane (Figs.1 and 2; 00, = h, O,O, = R), which enable us to change from one system of polar 
coordinates to another 

p-Q?* = q “r(l-s)~(~)n.!r~-~~_., ( 1 (I% < 4 
“-0 

( 1 Pl -* pm1 * 
’ =2&j s r (8) hap-‘ 

-7i- r sinruP(i+s-n) 
ef"'l*" & 

(1-l) 

(1.2) 

$1 = cp -s-a, 01 = 'p1* a<cp<2n+a 

*'I=-q-n+aa, o,=--cp,, -2x+a<cp<a 

(1.3) 

We will apply (1.2) with o1 and g, to satisfy the boundary condition on the face cp= 

o>a and with 0, and $ on the face cp = O<a. 
Formula (1.1) is obtained as follows. The boundary value problem of finding a harmonic 

function within a circle of radius pl< h with centre at the point 0, (Fig.1) is solved. 
Values of another harmonic function p-a@ are taken as boundary values. Hence we obtain 
the equality of the two harmonic functions 
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pm 'e (1.G) 

that holds not only on the boundary but also within a circle. Setting 'pr --m 0 ((p =-: a) there- 
in, we obtain 

We will find ci, from this equality. Differentiating (1.4) with respect to 'pr and again 
setting mr=O(cp=a) we find 6,. After elementary reduction we obtain (1.1). The uniqueness 
of the expansion obtained by this method follows from the uniqueness of the solution of the 
boundary value problem. 

Formula (1.2) can be obtained if the Dirichlet boundary value problem is solved for an 
angle with apex at the point 0 containing the ray 'pr = n. 

The equality (1.3) is obtained in an elementary manner from the equations 

zk = xk + iv,, R = O,O, 

2. For simplicity, we will consider just one 

Problem 1. Find a harmonic function n (5, Y) 
circle omitted,bymeans of the boundary conditions 

circular hole in an elastic wedge. 

in a domain 51 that is an angle, with a 

u ltpq = 0, au/an IP,=R = 0 (2.1) 
8uiht Icpzo = p%(p), grad u I_ = 0 (2.2) 

(p is the shear modulus). We will assume that 1 grad u 1 E _L,,(Q,) where 9, is the neighbour- 
hood of the wedge apex and r(p)E .L (0,~). 

We will seek the solution in the form of the expansion /l-4/ 

(a, ~0s ncp, + b, sin v,) + 

i; (A(s)coss(w--)i~B(s)sinscpj~ds 

(I?: 0 < Res< 6, < 1) 

Fig.1 

The boundary conditions realized by using 
algebraic system of equations (a,, = 0, e = R/h, 

0, =i 
Fig.2 

expansions (1.1) and (1.2) result 
B=o--a) 

(2.3) 

in anintegro- 
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M, (s) = r V - 4 h-’ 
Yn (4 = 

nr (a) h-* 
l-(1-a---_)cosos ’ J?(i + s-n)sin* 

Yo (4 = (PV J P”T (PI 4J 
0 

It follows from the geometry of the problem that 0< E < 1. 
We shall temporarily assume that apex L(O,oo) for O(h(6,. It is later possible 

to get rid of this constraint and to set h = 0. 
Let us study system (2.4). To do this we introduce the operators 

We will examine the operators D,“, ma (a = a,,fi) in the space LI (- CO, m). 

Theorem 1. The operators D,” and FIX" act completely continuously from L,(- 00, CO) 
to 1, under the condition 

arcsin E < min (a, 0) (2.6) 

We carry outtheproof only for D,S since it will ba snalouous for the other operators. 
We will first show that the se&es -- 

~~=~_~J$ll.(s)f~s)coaB~j.dr, r=a+ir (2.7) 

converge* for any function f(s)c L,(- ~D,oo). We have 

The Parseval equality is used here to expand (1.1) in which we have put pI = Z?. The 
integral of the second component in parentheses inthelast formula converges since a> B. 
We convert the integral of the first ccmponent to the form 

Pl - 

The iMer intagrai &viously convarges providad that 

l rcsias<a (2.W 
This means that the serie@ (2.7) l l8o converges under this condition. If the circle 
R intersects the ray cp‘= 0, condition (2.8) is violated and the inner intsgralcon- __ _ 

verges not for all ~(E)EL*(- 00,~). T?ds means that this condition is not only sufficient 
for series (2.7) to converge butalsonecessary. 

By using truncated sequences t/5/, Sect.20, par.20.4) the complete continuity of the 
operator D,@ from L2(- w,~) into b under condition (2.8) is established from the con- 
vergence of series (2.7). Tha theorem is proved for D,fl. The complete continuity of the 
remaining operators D,,=, r,,’ (e = a, fl) from Ls (- 00, m) to & is established by the same 
method. Condition (2.6) is the general necessary and sufficient condition for complete con- 
tinuity for the whole set of operators D,* and r,o. 

Thus, we have established that a matrix operator is on the right-hand side of (2.4), 
whose elements are completely continuous operators from L2(- 00,w) to z* under the condition 
(2.6). 

To analyse (2.5) it is convenient to introduce the operators 
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and to consider them defined in 1,. 

Theorem 2. The operators A,, B, (a == a,f3) 
co) under the condition (2.6). 

act completely continuously from i2 to Lc,(-. W, 

We will prove the theorem for the operator R,. We will first establish the convergence 
of the integral 

for the arbitrary sequence h,E 1,. We have 

(2.9) 

(2.10) 

The Parseval equality in known form (/6/,p.126, par.3.171, applied to the expansion (1.2) 
in which we set Q = o is used in the transformation of the integral (2.10). 

Series (2.10) converges under the condition minp,> R, which is equivalent to the con- 
dition 

arc sin .s < p (2.11) 

Convergence of the inner series in (2.10) implies the convergence of series (2.9). If 
condition (2.11) violated (this occurs when the circle p1 = R intersects a side of the angle 
cp = o) then the inner series in (2.10) will not converge for all &,E Is, This means that 
condition (2.11) is a necessary and sufficient condition for series (2.10) to converge. 

We establish from the fact that integral (2.9) converges,byusing truncated functions 
(equal to zero for IT I> 1) in L,(- m,m), that the operator BB acts completely con- 
tinuously from I, into L,(- m,m) under condition (2.11), where this conditionisnecessary 
and sufficient. The validity of Theorem 2 for A,,& is established by an analogous method. 
Condition (2.6) is the general necessary and sufficient condition for complete continuity of 
these operators. The theorem is proved. 

Theorem 2 has established that the matrix operator defined by the right-hand side of 
(2.5) has completely continuous operators from 1, into L,(- m,m) as its elements. 

We will also bear in mind that y,,(s)= L,(- m, m) in (2.6) is the condition for the 
circle not to intersect with the sides of the angle. 

3. As a,result of eliminating the functions A (S) and B(s) from system (2.4) and 
(2.51, we arrive at the infinite system of equations 

fink (f) chT(fi-a) dr 

ch TO 
-0D 

en+k (- 1)” r (n + iT) 

Rnk (‘I = 2in! (k - I)1 r (1 - k + iT) ’ ~;~~=~_~~WWWp 

(3.2) 

It turns out to be possible to set h = 0 in the system obtained so that the condition 

on r (P) appears naturally: r(p)= L (0, m). 
In analysing system (3.1) we start from the fact that its matrix operator is obtained 

as a result of composition of completely continuous matrix operators. Since the composition 
of two completely continuous operators is a completely continuous operator, the matrixoperator 
of (3.1) will be completely continuous from 1, into 1,. We have thereby established the 
following theorem. 

Theorem 3. The operator of system (3.1) is completely continuous in I, under condition 
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(2.6). This condition is also necessary. 
Analogous reasoning enables us to deduce that (a,,, &,)E &Therefore, a solution of system 

(3.1) belonging to 1% exists, is unique, and can be found by the method of reduction under 
the condition 

arcsin e < min (a, 0) (3.4) 

This last assertion follows from the Hilbert alternative /7/ and the uniqueness of the 
solution of the initial problem of elasticity theory /0/ under the condition that the lines 
bounding the body do not touch. 

Remark. When the wedge is perforated by k circular holes, the solution of the problem 
should be taken in the form 

where uO is the integral component in (2.3). We again obtain a set of k infinite systems 
which will possess the same property as system (3.1) under 
touch each other and the sides of the angle, by the method 
expansion (1.3). 

4. We assume in the problem of a stamp that there is 
it itself adheres to the elastic body and is shifted along 
case 

b 

Yo = (M-l s P'X (I$& 
n 

the condition that the holes do not 
elucidated above and relying on 

no load outside the stamp, while 
the oz axis by a force T. In this 

and the distribution of the tangential forces rz(p) must be found from the condition u IV_0 = d 
for a<p< b. The constant d is found from the equilibrium equation 

sb stp)dp=T 
cl 

Fromthe conditions under the stamp we have the equation 

p-1 ~r,(x)~(ln~)dx=d + zen(a.H.Z (P) + &H,-(P)) 

(a<p<b) 

n-1 
(4.4) 

(4.2) 

K(~)=~-s-lth+ocosrzdr 
Cl 

We make the following substitutions in (4.1) 

E = a*lnz + b+, t = a* In p + b* 
2 a+=-, b*,,+!$-$ 

Ia (b/a) 

+z@)c)=(~(E), cp (E)= &,Tt (E)(l - E3-"* 
k-0 

where Tt (2) are Chebyshev polynomials, and we extract the logarithmic term from the series 
K (2): 

K(z)=- 4 In 1 z 1 + F(z). 

F(a)=&-+++ (thzo- l)cesrz]ds 
0 

Applying the procedure of the method of orthogonal polynomials /g/ to the equation 
obtained, we arrive at the infinite system 

l*o+JGr --pktekA, (6=-- nIn2/a*l) (4.3) 
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At,, = QM:n + b&i,,, M;fn = Zj”‘H,* (p), t--b* 
p=exp .+ 

We append the system 

(4.4) 

(4.5) 

obtained from (3.1) as a result of substituting the expansion for T=(P) therein, to the above 
system. The matrix elements have the form (3.2) and 

The set of sysstems (4.3) and (4.5), together with the statics condition, forms a closed 
system of equations to determine the unknowns a,,, b,, h, and d. 

5. Let us investigate system (4.3) and (4.5). We note first that the series 2 ~~~~~~~~ 
k,n 

converges. This follows from the fact that the function F(Z) hasderivatives of any order. 

Let us prove the convergence of the series xIL&:nlS, 
k.n 

2 eek91Mj!j,/*. We introduce the function 
k,n 

m 

(5.1) 

(0 is a real number). We will show that this is an analytic function of the variable v in 
a certain circle. Taking account of (4.4) and (4.2), we have (y= h/p) 

Formulas 8.334 (3),8.310 (1) and 3.381 (4) from /lo/ are used successively here. 
In last integral converges and has a derivative with respect to 9 provided that arcsin 

1 q) = arcsin e < j3 = 0 - a where this condition is necessary and sufficient for the integral to 
converge. Therefore, the function cp(q,P) will be analytic in the circle I ‘I I < sin B for 
fi<n/2 and in the circle \q1<1 for P>JL/~. The inequalities 

I$- H;(P) < 1 +, k-1,2,...; C=const 

follow from the Cauchy inequalities for the coefficients of the series (5.1) for lql= e<sinfi 
and b < n/2. For p > n/2 the sin B in (5.2) should be replaced by unity. The same estimate 
holds for the function Hk-(p). 

Let us investigate the convergence of the series 

(5.3) 

The Parseval equality was used here to expand the function dxk+ (p)/dt in a series of 
Chebyshev polynomials Tk(t). Taking account of the estimate (5.2) we will have the following 
inequality for series (5.3): 
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(5.4) 

Since inequality (5.2) holds under the condition sinfi>e when fi<n12, series (5.4) also 
converges under this condition. For p>nl2 the sin$ in (5.4) should be replaced by unitv. 
The series G will also converge in this case since e<l. Therefore, the condition arcsine< 
will be not only the sufficient but also the necessary conditon for series (5.3) to converge. 
Convergence of the series ;,jLhnf12 is proved analogously. The convergence of the double 

series of the squares of the moduli of the matrix coefficients ai;, ,?;a) was proved earlier 

under condition (3.4). Complete continuity of the matrix operators of systems (4.3) and (4.5) 
(/5/,p.216) in la follows from the convergence of the series noted. 

We have thereby established the following theorem. 

Theorem 4. Condition (3.4) is necessary and sufficient for the complete continuity of 
matrix operators of the right-hand sides of systems (4.3) and (4.5) in the space 1,. 

An approximate solution of the infinite systems of problems 1 and 2 can be obtained by 
the method of reduction or in the form of expansions in the small parameter e. 
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The case of several circular holes can be examined in an analogous manner. 
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